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Porosity-dependence of elastic properties and 
ultrasonic velocity in polycrystalline a lumina-  
a model based on cylindrical pores 

K. K. PHANI 
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Effective elastic moduli and ultrasonic velocity of materials having aligned cylindrical pores 
have been derived using a series expansion in terms of the difference between the upper and 
lower bounds of elastic moduli obtained by the variational method. The theoretical results 
for polycrystalline alumina agree well with the experimental data, confirming the suggestion 
of previous researchers that a matrix containing parallel cylindrical pores orientated 
perpendicular to the applied stress, provide a better model than a spherical one in describing 
the porosity-dependence of elastic moduli in sintered specimens. 

1. Introduction 
Extensive experimental and theoretical work has been 
done to determine the effect of porosity on the elastic 
properties of ceramics. However, the theoretical re: 
suits based on spherical porosity [1-4]  show a large 
discrepancy with the experimentally observed effect of 
porosity on elastic moduli [5, 6]. Dean  [7] was pos- 
sibly the first researcher to provide a rigorous com~ 
parison between the theory and experiment, taking 
into account the non-spherical nature of the pores. He 
could explain the observed variation of elastic moduli 
with porosity for .six cases out  of seven selected data 
sets investigated, based on the self-consistent oblate 
spheroidal inclusion theory [8]. 

The present author [9] has also used the same 
theory to explain the observed variation of ultrasonic 
velocity with porosity. Out of ten cases investigated, 
the theory failed to explain the observed variation in 
two of the data sets, one of which was the data on 
polycrystalline alumina reported by Nagarajan [6]. 
The failure of the self-consistent oblate spheroidal 
theory in this case was attributed to the difference in 
the pore geometry of specimens and that assumed in 
the theory. From the analysis of his experimental data 
on elastic moduli, Nagarajan [6] concluded that a cy- 
lindrical pore model with the pores orientated perpen- 
dicular to the stress, described the data much better 
than a spherical one. 

A similar conclusion was also drawn earlier by 
Hasselman and Fulrath [5] by comparing the data on 
alumina compiled by Knudsen [10], with the bounds 
of elastic moduli derived from Hashin and Rosen's 
[11] analysis of elastic properties of matrices contain- 
ing arrays of parallel cylindrical fibres, by setting the 
elastic properties of the fibres identically equal to zero. 
They suggested that in sintered bodies at least part of 
the porosity might be cylindrical, especially at higher 
porosities, where the pores tended to be interconnec- 

ted (open porosity), rather than isolated (closed or 
spherical). Thus a model based on cylindrical pores 
orientated perpendicular to the applied stress should 
provide a better explanation of the observed variation 
of elastic moduli with porosity, at least in the case of 
polycrystalline alumina data investigated. 

The "elastic-bound" model of Hashin and Rosen 
[11] expresses the stress energy in terms of the elastic 
moduli and provides upper and lower bounds for 
them based on the variational principles of minimum 
potential energy and minimum complementary en- 
ergy. For  random arrangement of fibres in the trans- 
verse plane, their results are expressed in terms of 
a bulk modulus (for which upper and lower bound 
coincide) and upper and lower bounds for shear 
modulus. In the bounding approach, the variation of 
elastic moduli with porosity can be effectively pre- 
dicted only if the upper and lower bounds are suffi- 
ciently close so as to bracket the true behaviour of the 
material within the experimental error inherent in 
elastic moduli measurements. Unfortunately, porous 
materials have bounds that are widely separated. This 
is because pores are filled with air which has negligible 
bulk modulus compared to that of the matrix. Thus 
the elastic bounds for porous material remain too far 
apart to serve the purpose of prediction of elastic 
properties within the margin of experimental error. 
A similar situation arises in the case of particulate 
composites, such as rubber-toughened polymers, 
where the inclusions are more compliant than the 

matr ix .  To overcome this problem, in the case of 
composite materials, a modelling approach based on 
series expansion in terms of the difference between the 
upper and lower bounds has been used to predict the 
effective properties of the material [12]. In this paper, 
the same approach is used to derive elastic 
moduli-porosity relations for materials with cylin- 
drical pores using the bounds given by Hashin and 
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Rosen [11]. Theoretical results are also compared 
with the data on polycrystalline alumina reported by 
Knudsen [10] and Nagarajan [6]. 

2. T h e o r e t i c a l  d e r i v a t i o n s  
The introduction of parallel cylindrical pores into 
a matrix results in considerable elastic anisotropy. For  
random arrangement of pores in the transverse plane, 
the material is assumed to be transversely isotropic 
[11]. Considering a Cartesian-coordinate system 123 
with the 1-axis in the pore direction and the 2,3-axes in 
the transverse plane, and setting the elastic properties 
of the fibres identically equal to zero, Hashin and 
Rosen's [11] bounds of effective elastic moduli in the 
23-plane are given by 

K*3 : 2(Ko 4- Go/3)v0(1 - qb) (1) 
2Vo + 

G*(+) I 2 ( l - v ~  1 23 = Go 1 Y--5~00 *A~ (2) 

n*(- )  Go 1 + A ~ "~2~ = (3) 

where ~ is the volume fraction of pores, K, G and v are 
the bulk modulus, shear modulus and Poisson's ratio, 
respectively. The subscript 0 refers to a pore-free i.e. 
theoretically dense material and the superscript *, 
4- and - signs indicate the effective modulus, upper 

and lower bounds, respectively. The values of A ~ and 
A ~ are obtained by solving a system of linear equa- 
tions (Equations 109-119 in [11]) and are given by 

2(1 - 2v0)  [(4Vo - 3) --  0 3 ] 
A s 

4 v 0 ( 0 4 + 6 0 - 4 v o 0 + 1 ) - ( 3 0 4 + 4 @ - 6 0 2 + 1 2 0 ) - 3  

(4) 

2(1 -- 2Vo)(1 - -  ~ 3 )  

A~ = (d? 4 - 4d~ 3 + 6qb 2 - 4~ + 1) (5) 

For  bulk modulus, the upper and lower bounds are 
coincident, but for shear modulus, they are different. 
The upper and lower bounds of the shear modulus for 
alumina are shown in Fig. 1. As mentioned before, 
these bounds are not close enough to give any useful 
estimate of the effective shear modulus of the material. 
The material behaviour will tend toward the upper 
bound as ~ approaches zero; on the other hand, as 
qb approaches unity, it will be closer to the lower 
bound. Thus the difference between the upper and 
lower bounds serves as a measure of the influence of 
the microgeometry coupled with the properties of the 
components. So it is reasonable to assume that the 
effective shear modulus may be modelled as a series 
expansion in terms of the difference between the upper 
and lower bounds [12]. Thus, retaining only the linear 
term, G*s is given by 

G ~ 3  n * ( + )  = - , 2 3  - ~ ( a * ~  +~ ~*~-)~ 
- -  ' 0 2 3  j + "-" (6) 

where 4, a function of dO, is a proportionality factor. 
Because the effective modulus value must fall between 
the extremes of the upper and lower bounds, the term 
~(d~) must satisfy the condition 0 < ~ ( + ) < 1 .  
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Figure 1 Calculated and observed effects of parallel cylindrical 
pores on the shear modulus of AlzOa (data from [6]). ( - - )  Upper 
bound, (-- - --) lower bound, ( ) present theory. 

G% should tend toward the upper bound as d? ap- 
proaches 0; alternately, as ~ approaches 1, G*3 should 
tend to the lower bound. This condition can be as- 
sured by requiring that qt(0) = 0 and qJ(1) = 1. Assum- 
ing that k0((~) can be adequately approximated by 
a truncated series expansion in qb, i.e. 

~(~) : ~ + [3(~ 4- y ~ 2  (7) 

the above two conditions give 

(0) : ~ : 0 (8) 

4(1) = ~ + [3 + 7 (9) 

thus 
4(4#) = (1 - y)c~ 4- y ~  2 (10) 

Substituting Equation 10 into Equation 6 

G~a = (1 - d?)(1 + yd?)G~ +) + d~(1 - y + 7d?)G*3 (-) 

(11) 

The surviving parameter, 7, is evaluated by using the 
concept of "contiguity" described by Hashin [4], 
which is defined as the average fraction of surface area 
shared by a pore with all neighbouring pores. The 
contiguity will be an increasing function of the pore 
volume fraction and can be expected to be very small 
only in the case of low volume fraction of pores. Thus 
at low volume fraction of pores, the matrix will remain 
continuous and it is expected that the effective 
modulus will tend toward the upper limit of elastic 
modulus. On the other hand, with increase in conti- 
guity for increasing pore volume, pores will become 
more and more interconnected and it is expected that 
the effective modulus will tend toward the lower limit. 
Now for a hexagonal close packing of pores of circular 
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Figure 2 HexagonaI array of cylindrical pores. 

cross-section as shown in Fig. 2, the maximum volume 
fraction that can be achieved is @~x= (x/6)31/2= 

0.9069. Any value of (~ > 0.9069 would Correspond to 
a continuous pore phase containing matrix inclusion. 
Alternatively, for a hypothetical system of equivalent 
cylindrical particles of matrix material embedded in 
a continuous "pore" phase, the maximum fraction of 
matrix in excess of 0.9069 would lower the porosity 
which is now given by (1 - (~m,~), making the matrix 
phase continuous. In the case of square array, a sim- 
ilar situation will arise for @n~a~ = re/4 = 0.7854. In 
terms of the notion of "contiguity", the situation 
4) > @m,x corresponds to "zero" matrix contiguity in 
the sense that the average contact area of neighbour- 
ing matrix zones is zero; t h e  situation for 
qb < 1 - (~m,x corresponds to "zero" pore contiguity. 
Intermediate states of contiguity are obtained between 
these limits of pore volume fraction, i.e. 
0max < (~) < 1 - -  (~) max" 

These considerations imply that at some critical 
pore volume fraction, qb~, a transition in phase conti- 
guity must occur so that in the neighbourhood of 
qb = ~ ,  the behaviour tends toward the limits of the 
lower bound, while in the vicinity of ~ = 1 - ~o, the 
behaviour will tend toward the limits of the upper 
bound. For random distributions of pores it is as- 
sumed that the various packing forms mentioned 
earlier occur at random with equal probability and the 
value ~o for such random packing is taken as the 
average of ~m~x values of the above two forms, i.e. 
~o = 0.846. Thus, assuming that as (~ ~ ~ + ~ o ,  
G*3 is within ~ of u23c*(-) and similarly as 
(~ ~ 1 - ((~o + 8qbc), G*3 will be within an equivalent 
range of c:*(+) ,~23 , one gets 

* r ~ * ( - ) q  [ ~ 3 3 , = , o  (12) LU23 j$=~)~ Jr- 8 

E ~ ' 3 ] , = 1 - , ~  = E G [ ~ + ) 3 , = I - , o  - ~ (13) 

neglecting the small term 6~o. Using Equations 2, 
3 and 11, these two equations can be solved to obtain 
the value of 7. The expression for 7 is quite complex 
and is given in the Appendix. Once 7 is known for 
a system, the value of G*3 can be evaluated from 
Equation 11. Transverse Young's modulus, E* = E~' 
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in the 23-plane can then be evaluated from the rela- 
tions given by Hashin and Rosen [11-1, i.e. 

E~ = E* - 4G23K~3 
K*3 + ~G*3 (14) 

where 
v *  ~2 
-x23V1 

= 1 -~ E~ (15) 

Young's modulus, E*, parallel to the pores follows the 
law of mixtures and is given by 

E~ = Eo(1 - ~) (16) 

v*, the longitudinal Poisson's ratio, is given by 
v~ = Vo. For  propagation of an ultrasonic wave in the 
2 or 3 direction, the longitudinal and transverse velo- 
city values are given by 

V~ = [(K% + G*3)/O-11/2 (17) 

vt  = [ G % / p ]  1/~ (18) 

where the density, 9, is calculated from the theoret- 
ically dense material, 90, using the relation 

9 = 9o(1 - •) (19) 

A comparison of experimental data with the theory is 
given below. 

3. Results and discussion 
Experimental data of Young's modulus and shear 
modulus on A1203 by Nagarajan [6-1 are shown in 
Figs 1 and 3, respectively. A computer program was 
run to calculate the values of G*3 and E* from Equa- 
tions 11 and 14. Mean polycrystalline (Voight, Reuss, 
Hill average) elastic moduli values for Ko and Go 
reported by Anderson et al. [13] were used in the 
theoretical calculations. These values, Ko = 251.0 and 
Go = 162.9 GPa, were obtained from the measured 
single-crystal elastic constants. The values of Eo and 
vo were taken as 402.0 GPa  and 0.25, respectively. 
Equation A1 gave the value of 7 = 0.50. The theoret- 
ical curves for G*3 and E* are shown in Figs 1 and 3, 
respectively. The upper and lower bounds for Young's 
modulus computed from Equation 14 using Equa- 
tions 1-3 are also shown in Fig. 3. Fig. 1 speaks for 
itself in terms of the comparison between experiment 
and theory. However, in the case of Young's modulus 
(Fig. 3), the theory tends to overestimate the value 
slightly. This may be because of the fact that, whereas 
the expressions for bounds of shear modulus, i.e. 
Equations 2 and 3, are the exact results, the expression 
for bulk modulus, Equation 1, is an approximate one 
E11]. It may also be noted that Equation 1 fails to give 
K% = Ko at (~ = 0 due to anisotropy assumptions. 

Fig. 4 shows the theoretical velocity values cal- 
culated from Equations 17 and 18 along with the 
experimental data reported by Nagarajan [6]. A value 
of 9o = 3.98 gmcm 3 was used in the calculation. 
Here, again, the fit between theory and experimental 
values for transverse velocity is almost as impressive 
as that of shear-modulus data. However, the theory 
overestimates the longitudinal velocity by about 10%, 
possibly because of the reasons mentioned earlier. But 
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Figure 3 Calculated and observed effects of parallel cylindrical 
pores on Young's modulus of A1203 (data from [-6]). ( ) Upper 
bound, ( ) lower bound, ( ) present theory. 

336 

A 

n 
(.9 

252 

0 

E 

t -  

>~ 168 

84 

Figure 5 

, \ 

\.E3 \ 
\ D  \ 

" \  
" ~ .  

\ .  

\ 
\ 

\ 

0 0.2 0.4 0.6 0.8 1 

Pore v o l u m e  f ract ion 

Calculated and observed effects of parallel cylindrical 
pores on the Young's modulus of A1203 (data from [10]). ( -  ) 
Upper bound, ( - -  - - - )  lower bound, ( ) present theory. 

1.2 i I I I 

103 

E 
~J 

v 

m 
�9 
> 

, 2  

o 
,= 
+~ 

0,96 

0.72 

0,48 

0,24 

[] 
[] 

0 l [ I I 

0 0,1 0.2 0.3 0.4 0.5 

Pore vo lume fract ion 

Figure 4 Calculated and observed effects of parallel cylindrical 
pores on the ultrasonic velocity of A1203 (data from [6]). [] Longi- 
tudinal, @ transverse. 

the variation of the velocity with the porosity (the 
slope) is in good agreement with the theory. 

It may be noted that ~2o was taken as 0.846 in the 
theoretical calculation. This shows that "zero" pore 
contiguity condition is achieved at a pore volume 
fraction of 0.154. Nagarajan's [61 data on porosity 

(Fig. 1 in [61) show that when the total pore volume 
fraction is 0.154, only about 0.03 volume fraction is 
open pores. So the major portion of the pores are 
isolated, making the matrix phase continuous. Thus 
the elastic moduli should be close to the upper bound 
as per the assumption of the theory. The data shown 
in Figs 1 and 3 closely follow the upper bound curve 
confirming the validity of the assumption. On the 
other hand, "zero" matrix contiguity is assumed to be 
achieved at a pore volume fraction of 0.846. 
Nagarajan's [6] data (Fig. 1 in [6]) show that even at 
a pore volume fraction of 0.40, 80% of it can be 
accounted for by open pores (interconnected). Thus 
even at this level of porosity the effective moduli will 
tend towards the lower bound. This is again confirmed 
from the data shown in Figs 1 and 3, thus validating 
the assumption regarding the value of (Pc. 

Fig. 5 compares the experimental data on alumina, 
as compiled by Knudsen [10] with the theoretical 
value. The figure shows that up to a porosity of about 
15%, the data are in fair agreement with the theory, 
but above this porosity the data almost follow curve of 
lower bound of Young's modulus. This indicates that 
for this group of data, d?o is possibly lower than that 
assumed in the deduction of the theory. However, no 
details about the pore structure are available to con- 
firm this. It may also be noted that the data shown in 
Fig. 5 have been compiled from the work of different 
researchers whose methods of fabrication varied. Thus 
the assumption that different batches of materials 
have the same pore structure may not be strictly valid. 
This may also be the reason for the deviation of theory 
from the experiment. 
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4. Conclusion 
The elastic moduli  and ultrasonic velocity of materials 
having aligned cylindrical pores have been derived 
using a series expansion in terms of the difference 
between the upper and lower bounds  of elastic moduli  
obtained by the variational method. The theoretical 
results for polycrystalline alumina agree well with the 
experimental data. Analysis shows that  a matrix con- 
taining parallel cylindrical pores oriented perpendicu- 
lar to the applied stress provide a better mechanical  
model  than a matrix containing spherical pores for 
predicting the effect of  porosi ty  on elastic moduli  and 
ultrasonic velocity at least in the case of the data  on 
the alumina studied. 
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Appendix 
Solution of Equat ions  12 and 13 yields 

7 = (F1 + Fz)/(F3 -t- F 4 + F5 + F6)  (A1)  

where 

Vl = qbr - (~c)[2 - b~)r162 

- b(1 - qb~)(A~),=t_,o] (A2i 

F :  = qbr - 1){1/[1 + bc~r 

+ 1/[1 + b(1 - (~o)(A~),=1_r (A3) 

F3 = 1/[1 + bqbc(A~),=,o] 

+ 1 - b(1 - d?o)(A~),_l_,c (A4) 

F~ = (d?~ - 1)[1 - b(~(A~),=,o] (15) 

Fs = - ~o[1 - b(1 - qbo)(A~),=a_,o] (A6) 

/76 = - {qbc/[1 + bd?c(A~),=,o] 

+ (1 - qb~)/[1 + b(1 - (~)(A~)+=I_,o]  } (17) 

b = 2(1 - Vo)/(1 - 2Vo) (18) 

~A ~ . . . .  indicates that  the value of the parameter  and t ~,=p 
A is evaluated for (~ = p. 
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